INNO-LiPA™ *CFTR*iage*

A simpler, more powerful concept for CFTR testing

INNO-LiPA *CFTR* iage has been designed for **easy and efficient** analysis of multiple *CFTR* mutations. To do so, an amplification product of the *CFTR* gene is hybridized with ten pools of oligonucleotide probes immobilized on the INNO-LiPA *CFTR* iage strip (Figure 1).

In addition to the pooled mutation lines, a series of lines corresponding to the mutation and wild type probes of the 12 most frequent *CFTR* mutations are added (Figure 2). This permits the **differentiation between homozygous and heterozygous results** and thus, immediate discrimination between healthy individuals, healthy carriers, and affected patients.

Finally, **optional poly T testing** has been included. It allows for better genetic counselling as [R117H;(T)5] is considered a mild CF-causing complex allele, whereas [R117H;(T)7] is considered more as a *CFTR* Related Disorders mutation.¹

Thanks to this innovative design, the **complete analysis of 88 mutations** can be achieved in more than 95% of samples using a single INNO-LiPA *CFTR*iage strip. For the remaining samples (less than 5%), the same amplicon can be reused for a second hybridization reaction on the relevant strip(s) (Figure 3).

Figure 1: INNO-LiPA CFTRiage Strip

CFTR mutation	Frequency
F508del	69,74%
G542X	2,54%
G551D	2,10%
R117H	1,31%
N1303K	1,58%
W1282X	1,22%
621+1G->T	0,93%
1717-1G->A	0,86%
2789+5G->A	0,72%
A455E	0,35%
CFTRdele2,3 (21kb)	0,29%
L927P	0,02%

Figure 2: List of the individual mutation lines on the INNO-LiPA *CFTR*iage strip with the respective allele frequency according to the *CFTR*2 variants list (March 2019)².

Only when necessitated by a reactive band for one or two of the ten pooled probes (less than 5% of the samples), the same amplicon can be reused for a second hybridization reaction on the relevant INNO-LiPA *CFTR* strip(s).

Figure 3: A positive pool line of the INNO-LiPA *CFTR*iage strip indicates which strip needs to be performed as a second round in order to complete the genetic analysis of the *CFTR* mutation.

LITERATURE

- 1. Dequeker et al., Eur J Human Genet. 2009 Jan; 17(1): 51-65
- 2. CFTR2 database (www.CFTR2.org)
- * All INNO-LiPA CFTRiage products are not yet available as CE marked products

© Fujirebio Europe, September 2019, FRE-188, ro

INNO-LiPA™ *CFTR*iage

A simpler, more powerful concept for CFTR testing

EXAMPLE 1: INNO-LiPA CFTRiage Strip

- Conjugate control = OK
- L12 negative: wild type line for G542X
- L24 positive: mutation G542X
- L37 positive: 9T

EXAMPLE 2: INNO-LiPA CFTRiage Strip

- Conjugate control = OK
- L5 positive: pooled mutations of the CFTR Italian Regional
- L11 positive: wild type line for F508del
- L23 positive: mutation F508del
- L36 positive: 7TL37 positive: 9T

INNO-LiPA CFTR Italian Regional Strip

- Conjugate control = OK
- L2 positive: mutation 4016insT
- L22 positive: wild type line for 4016insT

		Marker line 1	
		Conj. Control	
	1	CFTR19 A	
	2	CFTR19 B	
	3	CFTR17 A	
	4	CFTR17 B	
	5	CFTR Italian A	
	6	CFTR Italian B	
	7	CFTR deletions A	
	8	CFTR deletions B	
	9	CFTR Extra A	
	10	CFTR Extra A	
	11	W.F508del	
	12	W.G542X	
	13	W.G551D	
	14	W.R117H	
	15	W.N1303K	
	16	W.W1282X	
	17	W.621+1G->T	
	18	W.1717-1G->A	
	19	W.2789+5G->A	
	20	W.A455E	
	21	W.CFTRdele2,3(21kb)	
	22	W.L927P	
	23	M.F508del	
	24	M.G542X	
	25	M.G551D	
	26	M.R117H	
	27	M.N1303K	
	28	M.W1282X	
	29	M.621+1G->T	
	30	M.1717-1G->A	
	31	M.2789+5G->A	
	32	M.A455E	
	33	M.CFTRdele2,3 (21kb)	
	34	M.L927P	
		Marker line 2	
	35	5T	
	36	7T	
	37	9T	

1 1			
1 1			
		Marker line 1	7
		Conj. Control	-
	1	CFTR19 A	-
1 1	2	CFTR19 B	1
1 1	3	CFTR17 A	
1 1	4	CFTR17 B	
	5	CFTR Italian A	
	6	CFTR Italian B	
	7	CFTR deletions A	1
1 1	8	CFTR deletions B	1
1 1	9	CFTR Extra A	1 1
	10	CFTR Extra A	1
	11	W.F508del	1
	12	W.G542X	1
	13	W.G551D	
	14	W.R117H	
	15	W.N1303K	
	16	W.W1282X	
	17	W.621+1G->T	
	18	W.1717-1G->A	
	19	W.2789+5G->A	
	20	W.A455E	
	21	W.CFTRdele2,3(21kb)	
	22	W.L927P	
	23	M.F508del	
1 1	24	M.G542X	
	25	M.G551D	
	26	M.R117H	
1 1	27	M.N1303K	_
1 1	28	M.W1282X	
1 1	29	M.621+1G->T	
1 1	30	M.1717-1G->A	
1 1	31	M.2789+5G->A	
1 1	32	M.A455E	
	33	M.CFTRdele2,3 (21kb)	_
	34	M.L927P	
		Marker line 2	
	35	5T	_
	36	7T	4
	37	9T	_
ı I			

Conclusion:

- Sample with a homozygous G542X mutation
- No further testing required

Fujirebio Europe N.V.Technologiepark 6 - 9052 Gent - Belgium T +32 (0)9 329 13 29 - F +32 (0)9 329 17 75 www.fujirebio.com

Conclusion after INNO-LiPA CFTRiage:

- Sample positive for F508del (not homozygous)
- + a mutation out of CFTR Italian Regional
- Reflex testing with INNO-LiPA *CFTR* Italian Regional Strip

Final conclusion

- Sample is compound heterozygous for mutations F508del and 4016insT
- No further testing required

